Numerical Simulation of Radon Transport and Indoor Air Conditions Effects
نویسندگان
چکیده
Computational fluid dynamics (CFD) is a powerful tool for predicting and visualizing radon content and indoor air quality and is cost effective in comparison with other methods such as full scale laboratory and gas trace techniques. The intention of this article is to use CFD to simulate indoor radon distribution and ventilation effects. In this study a mechanically balanced ventilation system and a continuous radon monitor (CRM) were used to measure the indoor ventilation rate and radon levels. In a numerical approach the FLUENT CFD package was used to simulate radon entry into the building and effects on indoor air conditions. The effects of different ventilation rates, indoor temperature and relative humidity on indoor radon concentrations were investigated in a one family detached house in Stockholm. Results of numerical studies indicated that changes of ventilation rate, indoor temperature and moisture by means of ventilation systems have significant effects on indoor radon content. Ventilation rate was inversely proportional to indoor radon concentration. Minimum radon levels were estimated in the range of thermal comfort, i.e. at 21 and relative humidity between 50-70%. The analytical solution was used to validate numeric results at 3 distinct air change rates. Comparisons between numerical and analytical results showed good agreement but there was poor agreement between simulations and measurement results due to the short measuring period. Index Terms — Numerical modeling, Radon mitigation, Balanced Ventilation, Residential buildings —————————— —————————— Nomenclature and abbreviations
منابع مشابه
Effects of Heat Recovery Ventilation Systems on Indoor Radon
Keramatollah Akbari, Jafar Mahmoudi TDI researcher at ACECR, Iran and Mälardalen University, PhD student, School of Sustainable Development of Society and Technology, Västeras, Sweden [email protected] Mälardalen University, Adj Professor at School of Sustainable Development of Society and Technology, Västeras, Sweden [email protected] Abstract A heat recovery ventilation system en...
متن کاملSimulation of Ventilation Effects on Indoor Radon in a Detached House
CFD is widely used in indoor air quality, air flow pattern, indoor pollutant distribution and thermal comfort as a cost effective and powerful tool and it can be used to predict, estimate and visualize the indoor radon level. . The intention of this article is to use computational fluid dynamics (CFD), as a standalone tool to simulate indoor radon distribution and ventilation effects. This tech...
متن کاملIndoor radon entry: 30 years later
The paper discusses the results of 30 years of radon indoor entry research. While some progress has been made, many discrepancies between current theories and experimental data still remain. Misconceptions of radon transport mechanisms in homes are analyzed. The role of US Environmental Protection Agency in radon indoor entry research is examined and the agency's policies are criticize...
متن کاملDesign and operation optimization of an air conditioning system through simulation: an hour-by-hour simulation study
In the present research, performance validation of a Heating, Ventilation, and Air Conditioning (HVAC) system operating in a library building was conducted. The operating HVAC system was studied in terms of the provided indoor air conditions and energy consumption level. The fieldwork measurements showed that the HVAC system is not capable of providing the desired indoor air conditions based on...
متن کاملIndoor Radon Measurement in Dwellings of Khorramabad City, Iran
Introduction: Exposure to indoor radon increases the risk of lung cancer. This study examined the level of indoor radon in dwellings of Khorramabad city, by using passive alpha-track detector (CR-39) during winter of 2016. Materials and Methods: In the present study, we detected the concentration of indoor radon in 56 dwellings. A passive sampling instrument (alpha-track detector with CR-39 pol...
متن کامل